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1. ABSTRACT-The problem undertaken for this paper is 
“An Elliptic Curve Cryptography approach for Digital 
Signature in PDA devices”. Digital transaction have become 
common place and in some cases inextricably linked to modern 
life. This technological dependency requires that information be 
unaltered and confidential. So in this paper, problem is to 
search a good secure technique, which ensures the 
confidentiality and privacy of message. Cryptography is one 
efficient way to ensure that if sent message fall into wrong 
hands, they cannot read it. It is the art of secret writing. Digital 
signature allows the verification of the ‘origin’ of messages. We 
use the concept of RSA (by Rivest, Shamir and Adleman) and 
Elliptic curve Algorithm to implement Digital Signature. Our 
problem is to find equation of polynomial such that it is too 
complex to design its elliptic curve. An elliptic-curve group for 
cryptography comes from the multiples of a generating point 
‘G’ a two dimensional point on an elliptic curve over a finite 
field. In practice, the finite fields used are either integers modulo 
large primes, or a similar construction using 0/1 polynomials. 
 

2. INTRODUCTION 
       Elliptic Curve Cryptography (ECC) is a public key 
cryptography. In public key cryptography each user or the 
device taking part in the communication generally have a pair 
of keys, a public key and a private key, and a set of 
operations associated with the keys to do the cryptographic 
operations. Only the particular user knows the private key 
whereas the public key is distributed to all users taking part in 
the communication. Some public key algorithm may require a 
set of predefined constants to be known by all the devices 
taking part in the communication. ‘Domain parameters’ in 
ECC is an example of such constants. Public key 
cryptography, unlike private key cryptography, does not 
require any shared secret between the communicating parties 
but it is much slower than the private key cryptography. 
The mathematical operations of ECC is defined over the 
elliptic curve y2 = x3 + ax + b, where 4a3 + 27b2 ≠ 0. Each 
value of the ‘a’ and ‘b’ gives a different elliptic curve. All 
points (x, y) which satisfies the above equation plus a point at 
infinity lies on the elliptic curve. The public key is a point in 
the curve and the private key is a random number. The public 
key is obtained by multiplying the private key with the 
generator point G in the curve. The generator point G, the 
curve parameters ‘a’ and ‘b’, together with few more 
constants constitutes the domain parameter of ECC. One 
main advantage of ECC is its small key size. A 160-bit key in 

ECC is considered to be as secured as 1024-bit key in RSA. 
         There are three families of public-key cryptography in 
common use today. The most widely used systems are those 
based on integer factorization. In particular, the RSA 
cryptographic system is perhaps the most popular public-key 
algorithm. It is used in most web browsers (for SSL), email 
packages (for S/MIME) as well as within the Entrust family 
of products. Systems based on the discrete logarithm problem 
are also very popular as they can provide support for both 
digital signatures (with DSA) and key agreement (with the 
Diffie-Hellman algorithm). Traditionally Entrust has 
supported both of these families of cryptographic algorithms. 
This family is based on arithmetic using elliptic curves. 
Elliptic curve cryptography (ECC) is a relatively new 
family of public-key algorithms that can provide shorter key 
lengths and, depending upon the environment and application 
in which it is used, improved performance over systems 
based on integer factorization and discrete logarithms. This 
paper will describe about the Elliptic Curve Cryptography, 
discuss its security and performance advantages and describe 
Entrusts support of this important type of Cryptography. 
 

3. ELLIPTIC CURVES ARITHMETIC 
3.1  FIELD ARITHMETIC 
ECC uses modular arithmetic or polynomial arithmetic for its 
operations depending on the field chosen. The arithmetic 
involves big numbers in the range of 100s of bits. This 
section gives a brief overview for these two finite field 
operations. 
3.2  MODULAR ARITHMETIC 
Modular arithmetic over a number p involves arithmetic 
between numbers 0 and p – 1. If the number happens to be 
out of this range in any of the operation the result is wrapped 
around in to the range 0 and p – ADDITION 
                            Let p = 23, a = 15, b = 20 
a + b (mod p) = 15 + 20 (mod 23) = 35 mod 23 = 12 
Since the result of a + b = 35 which is out of the range [0 22], 
The result is wrapped around in to the range [0 22] by 
subtracting 35 with 23 till the result is in range [0 22]. a mod 
b is thus explained as remainder of division a/b. 
            SUBTRACTION 
Let p = 23, a = 15, b = 20 
a - b (mod p) = 15 - 20 (mod 23) = -5 mod 23 = 18 
Since the result of a - b = -5 which is negative and out of the 
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range [0 22], The result is wrapped around in to the range [0 
22] by adding -5 with 23 till the result is in range [0 22]. 
 MULTIPLICATION 
Let p = 23, a = 15, b = 20 
a * b (mod p) = 15 * 20 (mod 23) = 300 mod 23 = 1 
Since the result of a * b = 300 which is out of the range [0 
22], The result is wrapped around in to the range [0 22] by 
subtracting 300 with 23 till the result is in range [0 22]. 
 
DIVISION 
The division a/b (mod p) is defined as a * b-1 (mod p). b-1 is 
the multiplicative inverse of b over p. 
 MULTIPLICATIVE INVERSE 
   Multiplicative inverse of number b with respect to mod p is 
defined as a number b-1 such that b*b-1 (mod p) = 1. 
Multiplicative inverse exists only if b and n are relatively 
prime. The algorithm such as extended Euclidean algorithm 
can be used to find the multiplicative inverse of a number 
efficiently. Finding multiplicative inverse is a costly 
operation. 
FINDING X MOD Y 
  x mod y is the remainder of the division x/y. Finding x mod 
y by repeatedly subtracting y with x till the result is in range 
[0 y-1] is a costly operation. Methods such as Barrett 
Reduction can be used to find modulus of a number in 
efficient manner. 
 
3.3 POLYNOMIAL ARITHMETIC 
Elliptic curve over field F2m involves arithmetic of integer of 
length m bits. These numbers can be considered as binary 
polynomial of degree m – 1. The binary string (am-1 ... a1 a0) 
can be expressed as polynomial am-1xm-1 + am-2xm-2 + ... 
+ a2x2 + a1x + a0 where ai = 0  
1. For e.g., a 4 bit number 1101 can be represented by 
polynomial as x3 + x2 + 1. 
Similar to the modulus p on modular arithmetic, there is an 
irreducible polynomial of degree m in polynomial arithmetic. 
If in any operation the degree of polynomial is greater than or 
equal to m, the result is reduced to a degree less than m using 
irreducible polynomial also called a reduction polynomial. 
In binary polynomial the coefficients of the polynomial can 
be either 0 or 1. If in any operation the coefficient becomes 
greater than 1, it can be reduced to 0 or 1 by modulo 2 
operation on the coefficient. 
All the operations below are defined in field F24 are on 
irreducible polynomial f(x) = x4 + x + 1. Since m = 4 the 
operation involves polynomial of degree 3 or lesser. 
              Addition 
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On 
polynomial addition A + B gives x3 + 2x2 + x + 1. Taking 
mod 2 over coefficients, A + B = x3 + x + 1. On binary 
representation 
A = 1101 
B = 0110 
A + B = 1011 which is an XOR operation between A and B. 
This is true in all cases. Hence polynomial addition can be 
achieved by simple XOR of two numbers. 

i.e. A + B = A XOR B. 
               SUBTRACTION 
Addition and subtraction are same operation in F2m. 
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On 
polynomial subtraction A – B gives x3 – x + 1. Taking mod 2 
over coefficients A - B = x3 + x + 1 
On binary representation 
A = 1101 
B = 0110 
A - B = 1011 which is an XOR operation between A and B. 
This is true in all cases. Hence polynomial subtraction can be 
achieved by simple XOR of two numbers. 
i.e. A - B = A XOR B 
             MULTIPLICATION 
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On 
polynomial multiplication A * B gives x5 + x3 + x2 + x. 
Coefficient are reduced to mod 2. Since m = 4 the results are 
to be reduces to a degree less than 4 by irreducible 
polynomial x4 + x + 1. 
i.e. x5 + x3 + x2 + x (mod f(x)) 
          = (x4 + x + 1)x + x5 + x3 + x2 + x 
           = 2x5 + x3 + 2x2 + 2x 
          = x3, on reducing the coefficient on mod 2 
On binary representation 
A = 1101 
B = 0110 
A * B = 1000 
DIVISION 
The division a/b(mod f(x)) is defined as a * b-1 (mod f(x)). b-1 
is the multiplicative inverse of b over f(x). 
 
MULTIPLICATIVE INVERSE 
           Multiplicative inverse of number b with respect to 
irreducible polynomial f(x) is defined as a number b-1 such 
that b*b-1 (mod f(x)) = 1. The algorithm such as extended 
Euclidean algorithm can be used to find the multiplicative 
inverse of a polynomial efficiently. Finding multiplicative 
inverse is a costly operation. 
3.4 IRREDUCIBLE POLYNOMIAL 
Irreducible polynomial is an analogue to modulus p in 
modular arithmetic. Irreducible polynomial is a polynomial of 
degree m that cannot be expressed as the product of two 
polynomials of lesser degree. If in any polynomial arithmetic 
operation the resultant polynomial is having degree greater 
than or equal to m, it is reduced to a polynomial of degree 
less than m by the irreducible polynomial. An example is 
shown in multiplication section above. In many standard 
implementation of elliptic curve operation, for making 
polynomial reduction more efficient the irreducible 
polynomial is chosen to be trinomial (polynomial containing 
3 terms) or pentanomial (polynomial containing 5 terms). 
 

4. ALGEBRA AND NUMBER THEORY 
  Algebra and Number Theory[27] are the mathematical 
foundation of Modern Cryptography. Numerous 
cryptographic algorithms are designed. They are also the 
corner stone of (provable) security of cryptographic schemes. 
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We use the following notations. A prime number p is called a 
safe prime if p = 2p0 + 1, such that p0 is also a prime 
number. An integer n is called an RSA modulus if n is a 
product of two primes of equal size. An integer n is called a 
safe-prime product. There is a unique field of order pn for 
every prime p and every positive integer n, up to 
isomorphism. 
In detail, the finite fields are classified as follows :- 
 The order, or number of elements, of a finite field is 
of the form pn, where p is a prime number called the 
characteristic of the field, and n is a positive integer.  
 For every prime number p and positive integer n, 
there exists a finite field with pn elements.  
 Any two finite fields with the same number of 
elements are isomorphic. That is, under some renaming of the 
elements of one of these, both its addition and multiplication 
tables become identical to the corresponding tables of the 
other one.  
This classification justifies using a naming scheme for finite 
fields that specifies only the order of the field. One notation 
for a finite field is Fp

n. Another notation is GF(pn), where the 
letters "GF" stand for "Galois field". 
Groups and modular arithmetic in Zn. 
Mathematical “groups” play a decisive role in number theory 
and cryptography. We only talk of groups if, for a defined set 
and a defined relation (an operation such as addition or 
multiplication), the following properties are fulfilled: 
 The set is closed 
 A neutral element exists 
 An inverse element exists for each element 
 The associative law applies. 
 The abbreviated mathematical notation is (G, +) or 
(G, *). 
Definition. Zn: Zn comprises all numbers from 0 to n − 1 : Zn 
= {0, 1, 2, · · · , n − 2, n − 1}.Zn is an often used finite group 
of the natural numbers. It is sometimes also called the 
remainder set R modulo n. 
For example, 32-bit computers (standard PCs) only directly 
work with whole numbers in a finite set, that is the value 
range 0, 1, 2, · · · , 232 − 1. 
This value range is equivalent to the set Z232 . 
4.1 GROUPS 
First recall the definition of a group (a cyclic group in 
particular) and some other related notions. A group is a set G 
together with an associative binary operation * on elements 
of G such that G contains an identity element for * and every 
element has an inverse under *. If * is commutative, the 
group is called abelian or commutative. Often, a group is 
denoted by (G, *) or simply by G. A group G is called finite 
if |G| is finite. The number of elements of a finite group is 
called its order. 
4.2 THE ABELIAN GROUP 
     Given two points P,Q in E(Fp), there is a third point, 
denoted by P+Q on  E(Fp), and the following relations hold 
for all  P,Q,R in E(Fp) 
 P + Q = Q + P (commutatively)  
 (P + Q) + R = P + (Q + R) (associability)  

 P + O = O + P = P (existence of an identity element)  
 there exists ( − P) such that − P + P = P + ( − P) = O 
(existence of inverses)  
          Addition in a group 
If we define the operation mod+ on such a set where  
a mod + b := (a + b) (mod  n),  then the set Zn together with 
the relation mod+ is a group because the following properties 
of a group are valid for all elements in Zn: 
 a mod + b is an element of Zn (the set is closed), 
 (a mod + b) mod + c  a mod + (b mod + c) (mod+ 
is associative), 
 the neutral element is 0. 
Each element a 2  Zn has an inverse for this operation, 
namely n − a (because a mod + (n − a)  a + (n − a) (mod n) 
 n  0 (mod n)). 
Since the operation is commutative, i.e. (a mod + b) = (b mod 
+ a), this structure is actually a “commutative group”. 
 
Multiplication in a group 
If we define the operation mod* on the set Zn where a mod * 
b := (a * b) (mod n), then Zn together with this operation is 
usually not a group because not all properties are fulfilled for 
each n. 
Examples: 
a) In Z15, for example, the element 5 does not have an 
inverse. That is to say, there is no a with 5 * a * 1 (mod 15). 
Each modulo product with 5 on this set gives 5, 10 or 0. 
b) In Z55 \ {0}, for example, the elements 5 and 11 do not 
have multiplicative inverses. That is to say, there is no a 2 Z55 
such that 5 * a * 1 ( mod 55 ) and no a such that 11 * a * 1 ( 
mod 55 ). This is because 5 and 11 are not relatively prime to 
55. Each modulo product with 5 on this set gives 5, 10, 15, . . 
. , 50 or 0. Each modulo product with 11 on this set gives 11, 
22, 33, 44 or 0. On the other hand, there are subsets of Zn that 
form a group with the operation mod*. If we choose all 
elements in Zn that are relatively prime to n, then this set 
forms a group with the operation mod*. We call this set Z*n. 
4.3 FINITE FIELDS 
           The elliptic curve operations defined above are on real 
numbers. Operations over the real numbers are slow and    
inaccurate due to round-off error. Cryptographic operations 
need to be faster and accurate. To make operations on elliptic 
curve accurate and more efficient, the curve cryptography is 
defined over two finite fields. 
 Prime field Fp and 
 Binary field F2m 
The field is chosen with finitely large number of points suited 
for cryptographic operations. The operations in these sections 
are defined on affine coordinate system. Affine coordinate 
system is the normal coordinate system that we are familiar 
with in which each point in the coordinate system is 
represented by the vector (x, y). 
Graphically finite field can be as shown:-  
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                                                                                               Figure 9 – Finite field 
4.4 EC ON PRIME FIELD FP 
                     The equation of the elliptic curve on a prime 
field Fp[30] is y2 mod p= x3 + ax + b mod p, where 4a3 + 
27b2 mod p ≠ 0. Here the elements of the finite field are 
integers between 0 and p – 1. All the operations such as 
addition, substation, division, multiplication involves integers 
between 0 and p – 1. This is modular arithmetic and is 
defined in details. The prime number p is chosen such that 
there is finitely large number of points on the elliptic curve to 
make the cryptosystem secure. The graph for this elliptic 
curve equation is not a smooth curve. Hence the geometrical 
explanation of point addition and doubling as in real numbers 
will not work here. However, the algebraic rules for point 
addition and point doubling can be adapted for elliptic curves 
over Fp. 
The way that the elliptic curve operations are defined is what 
gives ECC its higher security at smaller key sizes. 
An elliptic curve is defined in a standard, two dimensional 
x,y Cartesian coordinate system by an equation of the form: 
y2 = x3 + ax + b 
The graphs turns out to be gently looping lines of various 
forms. 

 
Figure 10 - An elliptic curve 
 
In elliptic curve cryptosystems, the elliptic curve is used to 
define the members of the set over which the group is 
calculated, as well as the operations between them, which 
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define how math works in the group. It's done as follows: 
imagine a graph labeled along both axes with the numbers of 
a large prime field. That is to say: a square graph, p x p in 
size, where p is a very large prime number. Fp is the field of 
integers modulo p, and consists of all the integers from 0 to 
p-1. 
Now the prime numbers actually employed in practical ECC 
implementations are quite large, so it's difficult to visualize 
this graph if you use the real kinds of numbers used. But as 
an exercise, you can imagine a more comprehensible prime 
— such as 17. So you'd be looking at graph 17x17 units in 
size. Now if you define an elliptic curve — an equation of the 
form given above — so that there are points (x, y) on the 
curve that satisfy the condition that both x and y are members 
of the prime field, you have implicitly created a group from 
the set of integer points on the curve; it is a subset of all the 
points in the p by p matrix created when you drew the graph 
— specifically the ones the curve passes directly through. 
Note that unlike the groups used in Diffie Hellman, the 
elements of the set aren't integers, but points. But the system 
that will result is still going to be, in most senses, the same, 
familiar arithmetic system as those discussed above. It 
contains a set of elements (points, in this case), and when you 
add one point to another, or subtract one from another, there 
are rules that say what point in the set you wind up at when 
you do so — just as for the integers in the groups used in 
Diffie Hellman.  
4.5  POINT ADDITION 
             Point addition is the addition of two points P and Q 
on an elliptic curve to obtain another point L on the same 
elliptic curve. 

4.6  GEOMETRICAL EXPLANATION 
 
AAddddiinngg  PPooiinnttss  PP  aanndd  QQ    
Point addition( when Q ≠ -P)  Point 
addition(when Q ≠ -P)  
                    Consider two points P and Q on an elliptic curve 
as shown in figure11 (a). If Q ≠ -P then a line drawn through 
the points P and Q will intersect the elliptic curve at exactly 
one more point –R. The reflection of the point –R with 
respect to x-axis gives the point R, which is the result of 
addition of points P and Q. 
Thus on an elliptic curve R = P + Q. 
If Q = -P the line through this point intersect at a point at 
infinity O. Hence P + (-P) = O. 
This is shown in figure 11(b). O is the additive identity of the 
elliptic curve group. A negative of a point is the reflection of 
that point with respect to x-axis. 

5.1 ANALYTICAL EXPLANATION 
          Consider two distinct points J and K such that J = (xJ, 
yJ) and K = (xK, yK) 
Let L = J + K where L = (xL, yL), then 
xL = s2 - xJ – xK 
yL = -yJ + s (xJ – xL) 
s = (yJ – yK)/(xJ – xK), s is the slope of the line through J 
and K. 
If K = -J i.e. K = (xJ, -yJ) then J + K = O. where O is the 
point at infinity. 
If K = J then J + K = 2J then point doubling equations are 
used. 
Also J + K = K + J 
  

 
 
 
 
          
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        Figure 11(a)      Figure 11(b) 
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                                          Figure 12(a)   
 
 
 
 
 
 
 
 
 
   Figure 12(b) 
5.1.1 Point doubling 
        Point doubling is the addition of a point P on the elliptic 
curve to itself to obtain another point R on the same elliptic 
curve. To double a point P to get R, i.e. to find R = 2P, 
consider a point P on an elliptic curve as shown in figure12 
(a). If y coordinate of the point P is not zero then the tangent 
line at P will intersect the elliptic curve at exactly one more 
point –R. The reflection of the point –R with respect to x-axis 
gives the point L, which is the result of doubling the point P. 
Thus R = 2P. 
If y coordinate of the point P is zero then the tangent at this 
point intersects at a point at infinity O. Hence 2P = O when 
yP = 0. This is shown in figure12 (b). 
Point doubling ( when Py  0)Point doubling ( when Py =0) 
5.1.2  ANALYTICAL EXPLANATION 
Consider a point J such that J = (xJ, yJ), where yJ ≠ 0 
Let L = 2J where L = (xL, yL), Then 
xL = s2 – 2xJ 
yL = -yJ + s(xJ - xL) 
If yJ = 0 then 2J = O, where O is the point at infinity 
5.1.3  POINT SUBTRACTION 
Consider two distinct points J and K such that J = (xJ, yJ) and 
K = (xK, yK) 
Then J - K = J + (-K) where -K = (xk, -yk mod p) 
Point subtraction is used in certain implementation of point 
multiplication. 
 
5.2 EC ON BINARY FIELD F2M 
The equation of the elliptic curve on a binary field F2m is y2 
+ xy = x3 + ax2 + b, where b ≠ 0. Here the elements of the 
finite field are integers of length at most m bits. These 
numbers can be considered as a binary polynomial of degree 
m – 1. In binary polynomial the coefficients can only be 0 or 
1. All the operation such as addition, substation, division, 
multiplication involves polynomials of degree m – 1 or 

lesser.. The m is chosen such that there is finitely large 
number of points on the elliptic curve to make the 
cryptosystem secure. SEC specifies curves with m ranging 
between 113-571 bits . The graph for this equation is not a 
smooth curve. Hence the geometrical explanation of point 
addition and doubling as in real numbers will not work here. 
However, the algebraic rules for point addition and point 
doubling can be adapted for elliptic curves over F2m. 
5.2.1  Point Addition 
Consider two distinct points J and K such that J = (xJ, yJ) and 
K = (xK, yK) 
Let L = J + K where L = (xL, yL), then 
xL = s2 + s + xJ + xK + a 
yL = s (xJ + xL) + xL + yJ 
s = (yJ + yK)/(xJ + xK), s is the slope of the line through J 
and K. 
If K = -J i.e. K = (xJ, xJ + yJ) then J + K = O. where O is the 
point at infinity. 
If K = J then J + K = 2J then point doubling equations are 
used. 
Also J + K = K + J 
5.2.2  Point Subtraction 
Consider two distinct points J and K such that J = (xJ, yJ) and 
K = (xK, yK) 
Then J - K = J + (-K) where -K = (xk, xk + yk) 
Point subtraction is used in certain implementation of point 
multiplication. 
5.2.3  Point Doubling 
Consider a point J such that J = (xJ, yJ), where xJ ≠ 0 
Let L = 2J where L = (xL, yL), Then 
xL = s2 + s + a 
yL = xJ2 + (s + 1)*xL 
s = xJ + yJ/ xJ, s is the tangent at point J and a is one of the 
parameters chosen with the elliptic curve If xJ = 0 then 2J = 
O, where O is the point at infinity. 
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            5.2.4  Point Multiplication 
The dominant operation in ECC cryptographic schemes is 
point multiplication. This is the operation which is the key to 
the use of elliptic curves for asymmetric cryptography — the 
critical operation which is itself fairly simple, but whose 
inverse (the elliptic curve discrete logarithm problem — 
defined below) is very difficult. ECC arranges itself so that 
when you wish to perform an operation the cryptosystem 
should make easy — encrypting a message with the public 
key, decrypting it with the private key — the operation you 
are performing is point multiplication. 
Point multiplication is simply calculating kP, where k is an 
integer and P is a point on the elliptic curve defined in the 
prime field. In terms of the addition operation we defined 
above, and the corresponding diagram, you can see how the 
following would look: take a point, add it to itself 
(doubling). Then take the result, and the original point, and 
add them together again, using the chord and tangent rule. 
Then take that result, and the original point again, and use the 
chord and tangent rule yet again. And so on — doing one 
doubling, and k-2 chord and tangent additions, until you've 
added P to itself k-1 times, giving kP. 
Now if the only way of doing this were in fact to repeat those 
precise operations — finding the points P, 2P, 3P, and so on 
up to kP — elliptic curves would be useless for cryptography, 
since the operation which searches for k given only P and kP 
(see the elliptic curve discrete logarithm problem, below) 
would be no harder than doing this. You could thus search for 
k from kP as quickly as you could calculate kP directly given 
p and k. 
However, there are shortcuts for point multiplication. Given 
the known shape of the curve, there are in fact several 
algorithms available  which run in considerably less time than 
would such a stepwise operation. Which of them you choose 
to use depends on a number of factors - including which 
calculations you might be able to do ahead of time (which is 
practical for some cryptographic protocol purposes, in which 
P is known ahead of time), how much RAM you can set aside 
for lookup tables, and that sort of thing.  
None of the operations is exactly what you'd call trivial. But 
all of them are vastly easier than doing it by stepwise addition 
— easier by many orders of magnitude. And they also run in 
near constant time for a given field size, regardless of what k 
and P you feed them as input. Some of the fastest working are 
in the NIST P192 curve, defined using the prime 2192-264+1. 
Here, you are able to get kP in the equivalent of 38 addition 
and 192 doubling operations, when counting only those 
which are usable even when P isn't known ahead of time. 
You can do better still, in fact, in hardware implementations, 
in fields of order 2m. In these fields-the fields called binary 
fields, or characteristic two finite fields hardware 
implementations that take advantages of opportunities for 
parallel processing, multiplication has been accelerated. Now 
these still aren't trivial operations. But the important thing is 
this: compared to what the attacker has to do to get k back 
from kP, it's nothing. Which brings us to the inverse 
operation. 

5.3 ELLIPTIC CURVE CRYPTOGRAPHY 
(DISCRETE LOGARITHM PROBLEM) 
 The security of ECC depends on the difficulty of 
Elliptic Curve Discrete Logarithm Problem. Let P and Q be 
two points on an elliptic curve such that kP = Q, where k is a 
scalar. Given P and Q, it is computationally infeasible to 
obtain k, if k is sufficiently large. k is the discrete logarithm 
of Q to the base P. Hence the main operation involved in 
ECC is point multiplication. i.e. multiplication of a scalar k 
with any point P on the curve to obtain another point Q on the 
curve. 
The inverse operation to point multiplication — finding a log 
in a group defined on an elliptic curve over a prime field — is 
defined as follows: given points Q and P, find the integer k 
such that Q=kP. 
This is the elliptic curve discrete logarithm problem — and 
this is the inverse operation in the cryptosystem — the one 
you effectively have to perform to get the plaintext back from 
the cipher text, given only the public key. 
Now naively the obvious, certain way of finding k would be 
to perform repeated addition — operations — stepping 
through P, 2P, 3P, and so on, until you find kP. You'd start by 
doubling P, then adding P to 2P finding 3P, then 3P to P 
finding 4P and so on. This is the brute force method. The 
trouble with this is if you use a large enough prime field, the 
number of possible values for k becomes inconveniently 
large. So inconveniently large that it's quite practical to create 
a sufficiently large prime field that searching through the 
possible values of k would take all the processor time 
currently available on the planet thousands of years. Though 
there is a bit more to the story we have to get to now, to 
distinguish between how difficult it is to break ECC versus 
how difficult it is to break Diffie Hellman and RSA. 
Example of Point multiplication:- 
In point multiplication a point P on the elliptic curve is 
multiplied with a scalar k using elliptic curve equation to 
obtain another point Q on the same elliptic curve. i.e. kP=Q 
Point multiplication is achieved by two basic elliptic curve 
operations 
 Point addition, adding two points J and K to obtain 
another point L i.e., L = J + K. 
 Point doubling, adding a point J to itself to obtain 
another point L i.e. L = 2J. 
Here is a simple example of point multiplication.  
Let P be a point on an elliptic curve. Let k be a scalar that is 
multiplied with the point P to obtain another point Q on the 
curve. i.e. to find Q = kP. 
If k = 23 then kP = 23.P = 2(2(2(2P) + P) + P) + P. 
Thus point multiplication uses point addition and point 
doubling repeatedly to find the result. The above method is 
called ‘double and add’ method for point multiplication. 
There are other efficient methods for point multiplication 
such as NAF (Non – Adjacent Form) and wNAF (windowed 
NAF) method for point multiplication. 
5.3.1  Elliptic Curve Domain parameters 
             Apart from the curve parameters a and b, there are 
other parameters that must be agreed by both parties involved 
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in secured and trusted communication using ECC. These are 
domain parameters. The domain parameters for prime fields 
and binary fields are described below. The generation of 
domain parameters is out of scope of this paper. Generally 
the protocols implementing the ECC specify the domain 
parameters to be used. 
5.3.2  Domain parameters for EC over field Fp 
 The domain parameters for Elliptic curve over Fp 
are p, a, b, G, n and h. p is the prime number defined for 
finite field Fp . a and b are the parameters defining the curve 
y2 mod p= x3 + ax + b mod p. G is the generator point (xG, 
yG), a point on the elliptic curve chosen for cryptographic 
operations and n is the order of the elliptic curve. The scalar 
for point multiplication is chosen as a number between 0 and 
n – 1. h is the cofactor where h = #E(Fp)/n. #E(Fp) is the 
number of points on an elliptic curve. 
5.3.3  Domain parameters for EC over field F2m 
                The domain parameters for elliptic curve over F2m 
are m, f(x), a, b, G, n and h.m is an integer defined for finite 
field F2m. The elements of the finite field F2m are integers of 
length at most m bits. f(x) is the irreducible polynomial of 
degree m used for elliptic curve operations. a and b are the 
parameters defining the curve y2 + xy = x3 + ax2 + b. G is the 
generator point (xG, yG), a point on the elliptic curve chosen 
for cryptographic operations. n is the order of the elliptic 
curve. The scalar for point multiplication is chosen as a 
number between 0 and n – 1. h is the cofactor 
where h = #E(F2m)/n. #E(F2m) is the number of points on an 
elliptic curve. 
Example:-(Elliptic curve over F23) Let p=23 and consider an 
elliptic curve E=> 
Y2 = x3 + x + 4 defined over F23. 
 

6. IMPLEMENTATION ISSUES 
Generation of Elliptic Curve on a finite set of Integers 

Consider an elliptic curve:-  y2 = x3 + ax + b (mod p)  such 
that 4a3 + 27b2  0 
Let domain parameters are a = 2, b = 3, & p = 5 then the 
curve is- 

y2 = x3 + 2x + 3 (mod 5) 
Now to find no of points on elliptic curve is:- 

 x = 0 =>  y2 = 3 => no solution (mod 5) 

 x = 1 => y2 = 6 = 1 => y = 1,4 (mod 5) 

 x = 2 => y2 = 15 = 0 => y = 0 (mod 5) 

 x = 3 => y2 = 36 = 1 => y = 1,4 (mod 5) 

 x = 4 => y2 = 75 = 0 => y = 0 (mod 5) 
Then points on the elliptic curve are:- 
    
(1,1)  (1,4) (2,0) (3,1) (3,4) (4,0) and the point at infinity. 
            Point Counting 
The order of E (Fp) is denoted as # E(Fp). 
Determining #E (Fp) is an important problem, called point 
counting. 
         Hesse’e Theorem 
P + 1 - 2 p     #E(Fp)     p + 1 +  2 p 

6.1 Elliptic Curve & Finite Field 
                        Elliptic curve calculations are usually defined 
over finite field The finite field is prime field GF(P) The 
elements are {0,1,2,…,p-1} all operations are modulo p 
 The finite field is a binary polynomial field GF(2m) 
 The elements are binary polynomials all operations 
are modulo 2 
x = am-1Xm-1 + am-2Xm-2 + … + a1X + a0  ; ai = {0,1} 
Defining the curve over Binary Field will speed up the 
calculations 
6.2         Elliptic Curve Scalar Multiplication 
 Scalar multiplication is the dominant computation part of 

ECC 
 It computes k×P for a given point P and integer k. 
 Q = k×P = (P + P + … + P) ((k-1) addition) 
 There are different methods for speeding up this process, 

The most common 
 one is the Binary Method (also called Double and Add 

Method) 
6.3      ECDSA (Signature Generation & 
Verification) 
The EC algorithms are specified above. An overview of EC 
cryptographic algorithms for key agreement and digital 
signature are explained below. 
6.4 ECDSA - Elliptic Curve Digital Signature 
Algorithm 
Signature algorithm is used for authenticating a device or a 
message sent by the device. For example consider two 
devices A and B. To authenticate a message sent by A, the 
device A signs the message using its private key. The device 
A sends the message and the signature to the device B. This 
signature can be verified only by using the public key of 
device A. Since  
the device B knows A’s public key, it can verify whether the 
message is indeed send by A or not. ECDSA is a variant of 
the Digital Signature Algorithm (DSA) that operates on 
elliptic curve groups. For sending a signed message from A 
to B, both have to agree up on Elliptic Curve domain 
parameters. The domain parameters are defined in section 9. 
Sender ‘A’ have a key pair consisting of a private key dA (a 
randomly selected integer less than n, where n is the order of 
the curve, an elliptic curve domain parameter) and a public 
key QA = dA * G (G is the generator point, an elliptic curve 
domain parameter). An overview of ECDSA process is 
defined below. 
6.4.1 Signature Generation 
For signing a message m by sender A, using A’s private key 
dA 
1. Calculate e = HASH (m), where HASH is a cryptographic 
hash function, such as 
       SHA-1 
    2. Select a random integer k from [1,n − 1] 
     3. Calculate r = x1 (mod n), where (x1, y1) = k * G. 
If r = 0, go to step 2 
     4. Calculate s = k -1(e + dAr)(mod n). If s = 0, go to 
step 2 
     5. The signature is the pair (r, s) 
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6.4.2 Signature Verification 
For B to authenticate A's signature, B must have A’s public 
key QA 
1. Verify that r and s are integers in [1,n − 1]. If not, 
the signature is invalid 
2. Calculate e = HASH (m), where HASH is the same 
function used in the signature generation. 
3. Calculate w = s −1 (mod n) 
4. Calculate u1 = ew (mod n) and u2 = rw (mod n) 
5. Calculate (x1, y1) = u1G + u2QA 
6. The signature is valid if x1 = r(mod n), invalid 
otherwise 
Size   The size of an ECC public key, ECDSA signature and 
an ECIES encryption will be compared with those produced 
by an RSA system. 
               Public Key Size 
An RSA public key consists of an ordered pair (n,e) where n 
is a composite number, called the modulus, and e is the 
public exponent. In a 1024-bit RSA system, n will have 1024 
bits. A common value for the public exponent is e=216+1. 
This is the value that Entrust uses. Thus, an Entrust RSA 
public key would require 128 bytes for the modulus and 3 
bytes for the public exponent. The total size is then 131 bytes. 
An ECC public key consists of a point on the elliptic curve. 
Each point is represented by an ordered pair of elements (x,y) 
each with 192 bits. For a 192-bit elliptic curve, the public key 
would then be represented by two 24-byte values, giving a 
total key size of 48 bytes.1As can be seen from the numbers 
above, ECC does provide a significant reduction in public 
key size. This reduction can be crucial in many severely 
constrained environments where large public keys are not 
possible. However, in a PKI using X.509 certificates, the 
effect of using the smaller public keys is minimal. A typical 
size for an X.509 certificate would be about 1K (~1000 
bytes). Thus, changing a user’s public key from RSA or DSA 
to ECC would reduce his/her certificate size by less than 
10%.Another important point to keep in mind is that each 
ECC public key is only valid in the context of certain 
parameters. These parameters must also be specified and 
transferred with integrity to the public key recipient (e.g. 
within an X.509 certificate). While there do exist certain 
curves which can be represented using short identifiers, in the 
general case, it will require an additional five 192-bit (24-
byte) quantities to specify these parameters. Thus, it could 
take up to 110 additional bytes. RSA does not require any 
parameters be transferred with the public key. 
                 Signature Size  
An RSA signature consists of a single 1024 bit value. Thus, it 
can be represented in 128 bytes. An ECDSA signature 
consists of two 192-bit values. Thus, it can be represented 
using two 24-byte values, for a total signature size of 48 
bytes.2 1 A method does exist to reduce the size of ECC 
public keys by almost a factor of 2. This method, called point 
compression, is a proprietary technique that is not available 
to all implementers of ECC, thus to ensure interoperability it 
is not recommended. For this reason, the size estimates given 
assume no point compression has been performed. If point 

compression was used, a public key could be represented 
using one 192-bit value and one additional bit. This would 
then require (24+1=) 25 bytes. Again, the reduction in 
signature size is substantial and may be important for many 
constrained environments. However, as with public key size, 
the difference represents less than 10% of the size of a public 
key certificate. For larger signed messages, the difference 
would represent an even smaller percentage of the overall 
message. 
               Encryption Size 
This section will compare the difference in size in 
transporting a 128 bit symmetric key using RSA and ECIES. 
This is the typical scenario when files are encrypted, for 
example. The encryption algorithm ECIES is specified in the 
ANSI X9.63 draft . A 128 bit symmetric key encrypted using 
RSA will consist of one 1024 bit value. Thus, it can be 
represented using 128 bytes. A 128 bit symmetric key 
encrypted using ECIES will consist of an elliptic curve point, 
a 128-bit value and a 160-bit value. The elliptic curve point 
consists of two 192-bit values, so it can be represented using 
two 24-byte values, or 48 bytes.3 The 128-bit value can be 
represented using 16 bytes and the 160-bit value can be 
represented using 20 bytes. Thus the encrypted symmetric 
key requires 84 bytes. While ECIES does indeed produce 
smaller encrypted values than RSA, the difference is not as 
dramatic as for public keys and signature values. When 
considering that the symmetric key will then usually be used 
to encrypt much larger files, the advantage may become 
inconsequential. 
6.4 Comparison with RSA 
     This section compares ECC public key sizes, signature 
and encryption lengths, and speed with those of RSA. Typical 
usage scenarios will be used to describe the effect these have 
on various implementations. The ECC system under 
consideration will use an odd characteristic 192-bit elliptic 
curve, which is the default used by the Entrust product line. 
The RSA system will use 1024-bit keys, which is also the 
default in the Entrust product line. 
6.5.1 Run-time Comparisons 
       To test and compare the performance characteristics of 
the RSA and ECDSA signature algorithms, we independently 
tested each of the three main components: key generation, 
signature generation and signature verification. Since ECC 
offers security equivalent to RSA using much smaller key 
sizes, the performances were tested according to the 
following table, suggested from . 

Symmetric ECC RSA 
80 163 1024 
112 233 2240 
128 283 3072 
192 409 7680 
256 571 15360 

Table 2 -Comparable key sizes (in bits) 
6.5.2     Tests were performed on an Intel P4 2.0 GHz 
machine with 512MB of RAM. 
The message used for signing is a 100 KB text file 
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Figure 13 - Comparison b/w ECC & RSA 

6.6   Security of ECC 
One of the advantages of using elliptic curve based 
cryptographic systems instead of integer factorization or 
discrete logarithm based methods is that they provide similar 
security levels using smaller key lengths. Why is this? As 
mentioned in the previous section, the security of any public-
key based cryptography is based upon the difficulty of 
solving certain mathematical problems. Thus, we can 
determine the amount of effort that would be required to 
break one of these public-key systems by looking at the effort 
required to solve these hard problems, using the best 
algorithms, software and hardware which are known. It 
should be noted that in the future new solutions to any of 
these problems might be discovered that drastically change 
the amount of effort required to solve them. The analysis 
below is based on the best methods known today. 
Most people consider the integer factorization and discrete 
logarithm problems to have approximately equivalent 

security. Both of these problems have undergone intensive 
review and study by many of the world’s top mathematicians 
and cryptographers. This can give us a sense of comfort that 
these problems are, in fact, difficult to solve. Actually, the 
best method known to solve each of these problems is the 
Number Field Sieve (NFS). The NFS is what is known as a 
sub-exponential time method. This means that the problem 
can be considered hard to solve, but not as hard as problems 
that only allow fully exponential solutions. It is generally 
accepted that, based on the difficulty of solving the integer 
factorization problem and discrete logarithm problem, RSA, 
DSA and Diffie-Hellman keys should be at least 1024 bits 
long and that for very long-term security (20 years or more) 
2048 bit keys should be used. Recently a large-scale effort 
was able to factor a 512-bit integer, thus showing that keys of 
this size are vulnerable to attack by large, sophisticated 
adversaries. 
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On the other hand, solving the ECDLP is generally 
considered to be a much more difficult problem than 
factoring integers or solving the discrete logarithm problem. 
Because of the structure that is inherent within an elliptic 
curve, the types of solutions to these problems do not seem to 
apply to the ECDLP. The best method known to solve the 
ECDLP is an elliptic curve version of an attack developed by 
Entrust researchers for the discrete logarithm problem, known 
as the parallel collision search method. This method is fully 
exponential, which means that that the ECDLP can be 
considered among the hardest types of problems to solve, 
using the best methods known today. One of the 
consequences of the ECDLP only having a fully exponential 
solution is that for every two additional bits of key used, 
attacking that key requires twice as much effort. Thus, 
attacking a 193-bit elliptic curve public key requires twice as 
much effort as attacking a 191-bit key. Because it is relatively 
new, the ECDLP has not received as much attention from 
mathematicians and cryptographers as the integer 
factorization and discrete logarithm problem. Although, 
within the past few years, that has begun to change and a 
great deal of effort has been made at attempting to solve this 
problem. Since a great deal of research is still ongoing, it is 
difficult to directly compare the security levels provided by 
ECC with those provided by RSA, DSA and Diffie-Hellman, 
for example. However, it seems reasonable that for security 
equivalent to an RSA key with 1024 bits, one should use an 
elliptic curve with about 170 bits and that for security 
equivalent to an RSA key with 2048 bits, one should use an 
elliptic curve with about 230 bits. The above discussion on 
the difficulty of attacking an ECC public key assumes that 
certain weak cases have been avoided when constructing the 
elliptic curve parameters. There are certain elliptic curves that 
are known to produce cryptographic systems with a 
substantially lower security level than the general case 
described above.  
 

7.CONCLUSION 
And this, in the end, is the reason ECC is a stronger option 
than the RSA and discrete logarithm systems for the future. 
And this, in the end, is why ECC is such an excellent choice 
for doing asymmetric cryptography in portable, necessarily 
constrained devices right now. 
As an example: as of this writing, a popular, recommended 
RSA key size for most applications is 2,048 bits. For 
equivalent security using ECC, you need a key of only 224 
bits. The difference becomes more and more pronounced as 
security levels increase (and, as a corollary, as hardware gets 
faster, and the recommended key sizes must be increased). A 
384 -bit ECC key matches a 7680-bit RSA key for security.  
The smaller ECC keys mean the cryptographic operations 
that must be performed by the communicating devices can be 
squeezed into considerably smaller hardware, that software 
applications may complete cryptographic operations with 
fewer processor cycles, and operations can be performed that 
much faster, while still guaranteeing equivalent security.  

This means, in turn, less heat, less power consumption, less 
real estate consumed on the printed circuit board, and 
software applications that run more rapidly and make lower 
memory demands. Leading in turn to more portable devices 
which run longer, and produce less heat. 
In short, if you're trying to make your devices smaller—and if 
you need to do asymmetric cryptography, you need ECC. If 
you're trying to make them run longer on the same battery, 
and produce less heat, and you need asymmetric 
cryptography, you need ECC. And if you want an asymmetric 
cryptosystem that scales for the future, you want ECC. And if 
you just want the most elegant, most efficient asymmetric 
cryptosystem going, you want ECC. If you just want the most 
elegant, most efficient asymmetric cryptosystem going, you 
want ECC. 
For efficient implementation of ECC, it is important for the 
point multiplication algorithm and the underlying field 
arithmetic to be efficient. There are different methods for 
efficient implementation point multiplication and field 
arithmetic  suited for different hardware configurations. 
Implementation of ECC using projective coordinates has 
shown considerable improvement in efficiency compared to 
the affine coordinate implementation. This improvement in 
efficiency is due to the elimination of multiplicative inverse 
operation in point addition and doubling that would otherwise 
cost considerable processor cycles. 
If the irreducible polynomial in binary field implementation 
is chosen to be trinomial or pentanomial the implementation 
of ECC on binary field can be made efficient than the prime 
field implementation. In SEC specified domain parameters, 
the irreducible polynomials are either trinomial or 
pentanomial. These chosen polynomials cause the polynomial 
reduction in binary field to run much faster than the modular 
reduction in prime field. 
How ECC is the next generation of public key 
cryptography 
Asymmetric cryptography is a marvelous technology. Its uses 
are many and varied. And when you need it, you need it. For 
many situations in distributed network environments, 
asymmetric cryptography is a must during communications. 
If you're taming key distribution issues with a public key 
infrastructure (PKI), you're using asymmetric cryptography. 
If you're designing or employing any kind of network 
protocol or application requiring secure communications, to 
come up with a practical solution, you're going to have to use 
asymmetric cryptography.  
Asymmetric cryptography has, in fact, proved so useful for 
securing communications that it has become pervasive in 
modern life. Every time you buy something on the Internet, if 
the vendor is using a secure server, you're using asymmetric 
cryptography to secure the transaction. 
But Asymmetric cryptography is demanding and complex, by 
its very nature. The hard problems in number theory — the 
key to the algorithms' functionality — are all intrinsically 
difficult enough that the processor cycles you must throw at 
doing it, and/or the chip space you must dedicate to the 
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implementation, inevitably far outstrip the resources you 
must dedicate for doing symmetric cryptography.  
That's why if you need asymmetric cryptography, you should 
be considering elliptic curve cryptography (ECC).  
 ECC offers considerably greater security for a given key 

size — something we'll explain at greater length later in 
this paper. 

 The smaller key size also makes possible much more 
compact implementations for a given level of security, 
which means faster cryptographic operations, running on 
smaller chips or more compact software. This means less 
heat production and less power consumption — all of 
which is of particular advantage in constrained devices, 
but of some advantage anywhere. 

 There are extremely efficient, compact hardware 
implementations available for ECC exponentiation 
operations, offering potential reductions in 
implementation footprint even beyond those due to the 
smaller key length alone. 

In short: asymmetric cryptography is demanding. But if 
you're looking for the cryptosystem that will give you the 
most security per bit, you want ECC. 
This thesis describes elliptic curve cryptography in greater 
depth — how it works, and why it offers these advantages. It 
will begin by discussing the larger subject of asymmetric 
cryptography in general. 
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