

An Elliptic Curve Cryptography approach for Digital

Signature in PDA devices.

Mahendra Singh yadav, Mahendra Kumar Rai

SRIT jabalpur , India

1. ABSTRACT-The problem undertaken for this paper is
“An Elliptic Curve Cryptography approach for Digital
Signature in PDA devices”. Digital transaction have become
common place and in some cases inextricably linked to modern
life. This technological dependency requires that information be
unaltered and confidential. So in this paper, problem is to
search a good secure technique, which ensures the
confidentiality and privacy of message. Cryptography is one
efficient way to ensure that if sent message fall into wrong
hands, they cannot read it. It is the art of secret writing. Digital
signature allows the verification of the ‘origin’ of messages. We
use the concept of RSA (by Rivest, Shamir and Adleman) and
Elliptic curve Algorithm to implement Digital Signature. Our
problem is to find equation of polynomial such that it is too
complex to design its elliptic curve. An elliptic-curve group for
cryptography comes from the multiples of a generating point
‘G’ a two dimensional point on an elliptic curve over a finite
field. In practice, the finite fields used are either integers modulo
large primes, or a similar construction using 0/1 polynomials.

2. INTRODUCTION
 Elliptic Curve Cryptography (ECC) is a public key
cryptography. In public key cryptography each user or the
device taking part in the communication generally have a pair
of keys, a public key and a private key, and a set of
operations associated with the keys to do the cryptographic
operations. Only the particular user knows the private key
whereas the public key is distributed to all users taking part in
the communication. Some public key algorithm may require a
set of predefined constants to be known by all the devices
taking part in the communication. ‘Domain parameters’ in
ECC is an example of such constants. Public key
cryptography, unlike private key cryptography, does not
require any shared secret between the communicating parties
but it is much slower than the private key cryptography.
The mathematical operations of ECC is defined over the
elliptic curve y2 = x3 + ax + b, where 4a3 + 27b2 ≠ 0. Each
value of the ‘a’ and ‘b’ gives a different elliptic curve. All
points (x, y) which satisfies the above equation plus a point at
infinity lies on the elliptic curve. The public key is a point in
the curve and the private key is a random number. The public
key is obtained by multiplying the private key with the
generator point G in the curve. The generator point G, the
curve parameters ‘a’ and ‘b’, together with few more
constants constitutes the domain parameter of ECC. One
main advantage of ECC is its small key size. A 160-bit key in

ECC is considered to be as secured as 1024-bit key in RSA.
 There are three families of public-key cryptography in
common use today. The most widely used systems are those
based on integer factorization. In particular, the RSA
cryptographic system is perhaps the most popular public-key
algorithm. It is used in most web browsers (for SSL), email
packages (for S/MIME) as well as within the Entrust family
of products. Systems based on the discrete logarithm problem
are also very popular as they can provide support for both
digital signatures (with DSA) and key agreement (with the
Diffie-Hellman algorithm). Traditionally Entrust has
supported both of these families of cryptographic algorithms.
This family is based on arithmetic using elliptic curves.
Elliptic curve cryptography (ECC) is a relatively new
family of public-key algorithms that can provide shorter key
lengths and, depending upon the environment and application
in which it is used, improved performance over systems
based on integer factorization and discrete logarithms. This
paper will describe about the Elliptic Curve Cryptography,
discuss its security and performance advantages and describe
Entrusts support of this important type of Cryptography.

3. ELLIPTIC CURVES ARITHMETIC
3.1 FIELD ARITHMETIC
ECC uses modular arithmetic or polynomial arithmetic for its
operations depending on the field chosen. The arithmetic
involves big numbers in the range of 100s of bits. This
section gives a brief overview for these two finite field
operations.
3.2 MODULAR ARITHMETIC
Modular arithmetic over a number p involves arithmetic
between numbers 0 and p – 1. If the number happens to be
out of this range in any of the operation the result is wrapped
around in to the range 0 and p – ADDITION
 Let p = 23, a = 15, b = 20
a + b (mod p) = 15 + 20 (mod 23) = 35 mod 23 = 12
Since the result of a + b = 35 which is out of the range [0 22],
The result is wrapped around in to the range [0 22] by
subtracting 35 with 23 till the result is in range [0 22]. a mod
b is thus explained as remainder of division a/b.
 SUBTRACTION
Let p = 23, a = 15, b = 20
a - b (mod p) = 15 - 20 (mod 23) = -5 mod 23 = 18
Since the result of a - b = -5 which is negative and out of the

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 600

range [0 22], The result is wrapped around in to the range [0
22] by adding -5 with 23 till the result is in range [0 22].
 MULTIPLICATION
Let p = 23, a = 15, b = 20
a * b (mod p) = 15 * 20 (mod 23) = 300 mod 23 = 1
Since the result of a * b = 300 which is out of the range [0
22], The result is wrapped around in to the range [0 22] by
subtracting 300 with 23 till the result is in range [0 22].

DIVISION
The division a/b (mod p) is defined as a * b-1 (mod p). b-1 is
the multiplicative inverse of b over p.
 MULTIPLICATIVE INVERSE
 Multiplicative inverse of number b with respect to mod p is
defined as a number b-1 such that b*b-1 (mod p) = 1.
Multiplicative inverse exists only if b and n are relatively
prime. The algorithm such as extended Euclidean algorithm
can be used to find the multiplicative inverse of a number
efficiently. Finding multiplicative inverse is a costly
operation.
FINDING X MOD Y
 x mod y is the remainder of the division x/y. Finding x mod
y by repeatedly subtracting y with x till the result is in range
[0 y-1] is a costly operation. Methods such as Barrett
Reduction can be used to find modulus of a number in
efficient manner.

3.3 POLYNOMIAL ARITHMETIC
Elliptic curve over field F2m involves arithmetic of integer of
length m bits. These numbers can be considered as binary
polynomial of degree m – 1. The binary string (am-1 ... a1 a0)
can be expressed as polynomial am-1xm-1 + am-2xm-2 + ...
+ a2x2 + a1x + a0 where ai = 0
1. For e.g., a 4 bit number 1101 can be represented by
polynomial as x3 + x2 + 1.
Similar to the modulus p on modular arithmetic, there is an
irreducible polynomial of degree m in polynomial arithmetic.
If in any operation the degree of polynomial is greater than or
equal to m, the result is reduced to a degree less than m using
irreducible polynomial also called a reduction polynomial.
In binary polynomial the coefficients of the polynomial can
be either 0 or 1. If in any operation the coefficient becomes
greater than 1, it can be reduced to 0 or 1 by modulo 2
operation on the coefficient.
All the operations below are defined in field F24 are on
irreducible polynomial f(x) = x4 + x + 1. Since m = 4 the
operation involves polynomial of degree 3 or lesser.
 Addition
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On
polynomial addition A + B gives x3 + 2x2 + x + 1. Taking
mod 2 over coefficients, A + B = x3 + x + 1. On binary
representation
A = 1101
B = 0110
A + B = 1011 which is an XOR operation between A and B.
This is true in all cases. Hence polynomial addition can be
achieved by simple XOR of two numbers.

i.e. A + B = A XOR B.
 SUBTRACTION
Addition and subtraction are same operation in F2m.
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On
polynomial subtraction A – B gives x3 – x + 1. Taking mod 2
over coefficients A - B = x3 + x + 1
On binary representation
A = 1101
B = 0110
A - B = 1011 which is an XOR operation between A and B.
This is true in all cases. Hence polynomial subtraction can be
achieved by simple XOR of two numbers.
i.e. A - B = A XOR B
 MULTIPLICATION
Consider two polynomial A = x3 + x2 + 1 and B = x2 + x. On
polynomial multiplication A * B gives x5 + x3 + x2 + x.
Coefficient are reduced to mod 2. Since m = 4 the results are
to be reduces to a degree less than 4 by irreducible
polynomial x4 + x + 1.
i.e. x5 + x3 + x2 + x (mod f(x))
 = (x4 + x + 1)x + x5 + x3 + x2 + x
 = 2x5 + x3 + 2x2 + 2x
 = x3, on reducing the coefficient on mod 2
On binary representation
A = 1101
B = 0110
A * B = 1000
DIVISION
The division a/b(mod f(x)) is defined as a * b-1 (mod f(x)). b-1
is the multiplicative inverse of b over f(x).

MULTIPLICATIVE INVERSE
 Multiplicative inverse of number b with respect to
irreducible polynomial f(x) is defined as a number b-1 such
that b*b-1 (mod f(x)) = 1. The algorithm such as extended
Euclidean algorithm can be used to find the multiplicative
inverse of a polynomial efficiently. Finding multiplicative
inverse is a costly operation.
3.4 IRREDUCIBLE POLYNOMIAL
Irreducible polynomial is an analogue to modulus p in
modular arithmetic. Irreducible polynomial is a polynomial of
degree m that cannot be expressed as the product of two
polynomials of lesser degree. If in any polynomial arithmetic
operation the resultant polynomial is having degree greater
than or equal to m, it is reduced to a polynomial of degree
less than m by the irreducible polynomial. An example is
shown in multiplication section above. In many standard
implementation of elliptic curve operation, for making
polynomial reduction more efficient the irreducible
polynomial is chosen to be trinomial (polynomial containing
3 terms) or pentanomial (polynomial containing 5 terms).

4. ALGEBRA AND NUMBER THEORY
 Algebra and Number Theory[27] are the mathematical
foundation of Modern Cryptography. Numerous
cryptographic algorithms are designed. They are also the
corner stone of (provable) security of cryptographic schemes.

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 601

We use the following notations. A prime number p is called a
safe prime if p = 2p0 + 1, such that p0 is also a prime
number. An integer n is called an RSA modulus if n is a
product of two primes of equal size. An integer n is called a
safe-prime product. There is a unique field of order pn for
every prime p and every positive integer n, up to
isomorphism.
In detail, the finite fields are classified as follows :-
 The order, or number of elements, of a finite field is
of the form pn, where p is a prime number called the
characteristic of the field, and n is a positive integer.
 For every prime number p and positive integer n,
there exists a finite field with pn elements.
 Any two finite fields with the same number of
elements are isomorphic. That is, under some renaming of the
elements of one of these, both its addition and multiplication
tables become identical to the corresponding tables of the
other one.
This classification justifies using a naming scheme for finite
fields that specifies only the order of the field. One notation
for a finite field is Fp

n. Another notation is GF(pn), where the
letters "GF" stand for "Galois field".
Groups and modular arithmetic in Zn.
Mathematical “groups” play a decisive role in number theory
and cryptography. We only talk of groups if, for a defined set
and a defined relation (an operation such as addition or
multiplication), the following properties are fulfilled:
 The set is closed
 A neutral element exists
 An inverse element exists for each element
 The associative law applies.
 The abbreviated mathematical notation is (G, +) or
(G, *).
Definition. Zn: Zn comprises all numbers from 0 to n − 1 : Zn
= {0, 1, 2, · · · , n − 2, n − 1}.Zn is an often used finite group
of the natural numbers. It is sometimes also called the
remainder set R modulo n.
For example, 32-bit computers (standard PCs) only directly
work with whole numbers in a finite set, that is the value
range 0, 1, 2, · · · , 232 − 1.
This value range is equivalent to the set Z232 .
4.1 GROUPS
First recall the definition of a group (a cyclic group in
particular) and some other related notions. A group is a set G
together with an associative binary operation * on elements
of G such that G contains an identity element for * and every
element has an inverse under *. If * is commutative, the
group is called abelian or commutative. Often, a group is
denoted by (G, *) or simply by G. A group G is called finite
if |G| is finite. The number of elements of a finite group is
called its order.
4.2 THE ABELIAN GROUP
 Given two points P,Q in E(Fp), there is a third point,
denoted by P+Q on E(Fp), and the following relations hold
for all P,Q,R in E(Fp)
 P + Q = Q + P (commutatively)
 (P + Q) + R = P + (Q + R) (associability)

 P + O = O + P = P (existence of an identity element)
 there exists (− P) such that − P + P = P + (− P) = O
(existence of inverses)
 Addition in a group
If we define the operation mod+ on such a set where
a mod + b := (a + b) (mod n), then the set Zn together with
the relation mod+ is a group because the following properties
of a group are valid for all elements in Zn:
 a mod + b is an element of Zn (the set is closed),
 (a mod + b) mod + c  a mod + (b mod + c) (mod+
is associative),
 the neutral element is 0.
Each element a 2  Zn has an inverse for this operation,
namely n − a (because a mod + (n − a)  a + (n − a) (mod n)
 n  0 (mod n)).
Since the operation is commutative, i.e. (a mod + b) = (b mod
+ a), this structure is actually a “commutative group”.

Multiplication in a group
If we define the operation mod* on the set Zn where a mod *
b := (a * b) (mod n), then Zn together with this operation is
usually not a group because not all properties are fulfilled for
each n.
Examples:
a) In Z15, for example, the element 5 does not have an
inverse. That is to say, there is no a with 5 * a * 1 (mod 15).
Each modulo product with 5 on this set gives 5, 10 or 0.
b) In Z55 \ {0}, for example, the elements 5 and 11 do not
have multiplicative inverses. That is to say, there is no a 2 Z55
such that 5 * a * 1 (mod 55) and no a such that 11 * a * 1 (
mod 55). This is because 5 and 11 are not relatively prime to
55. Each modulo product with 5 on this set gives 5, 10, 15, . .
. , 50 or 0. Each modulo product with 11 on this set gives 11,
22, 33, 44 or 0. On the other hand, there are subsets of Zn that
form a group with the operation mod*. If we choose all
elements in Zn that are relatively prime to n, then this set
forms a group with the operation mod*. We call this set Z*n.
4.3 FINITE FIELDS
 The elliptic curve operations defined above are on real
numbers. Operations over the real numbers are slow and
inaccurate due to round-off error. Cryptographic operations
need to be faster and accurate. To make operations on elliptic
curve accurate and more efficient, the curve cryptography is
defined over two finite fields.
 Prime field Fp and
 Binary field F2m
The field is chosen with finitely large number of points suited
for cryptographic operations. The operations in these sections
are defined on affine coordinate system. Affine coordinate
system is the normal coordinate system that we are familiar
with in which each point in the coordinate system is
represented by the vector (x, y).
Graphically finite field can be as shown:-

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 602

 Figure 9 – Finite field
4.4 EC ON PRIME FIELD FP
 The equation of the elliptic curve on a prime
field Fp[30] is y2 mod p= x3 + ax + b mod p, where 4a3 +
27b2 mod p ≠ 0. Here the elements of the finite field are
integers between 0 and p – 1. All the operations such as
addition, substation, division, multiplication involves integers
between 0 and p – 1. This is modular arithmetic and is
defined in details. The prime number p is chosen such that
there is finitely large number of points on the elliptic curve to
make the cryptosystem secure. The graph for this elliptic
curve equation is not a smooth curve. Hence the geometrical
explanation of point addition and doubling as in real numbers
will not work here. However, the algebraic rules for point
addition and point doubling can be adapted for elliptic curves
over Fp.
The way that the elliptic curve operations are defined is what
gives ECC its higher security at smaller key sizes.
An elliptic curve is defined in a standard, two dimensional
x,y Cartesian coordinate system by an equation of the form:
y2 = x3 + ax + b
The graphs turns out to be gently looping lines of various
forms.

Figure 10 - An elliptic curve

In elliptic curve cryptosystems, the elliptic curve is used to
define the members of the set over which the group is
calculated, as well as the operations between them, which

EC	Point	Arithmetic	

 Fp(odd prime)

Polynomial Optimal

Polynomial

F2
m (even)

Finite	Field

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 603

define how math works in the group. It's done as follows:
imagine a graph labeled along both axes with the numbers of
a large prime field. That is to say: a square graph, p x p in
size, where p is a very large prime number. Fp is the field of
integers modulo p, and consists of all the integers from 0 to
p-1.
Now the prime numbers actually employed in practical ECC
implementations are quite large, so it's difficult to visualize
this graph if you use the real kinds of numbers used. But as
an exercise, you can imagine a more comprehensible prime
— such as 17. So you'd be looking at graph 17x17 units in
size. Now if you define an elliptic curve — an equation of the
form given above — so that there are points (x, y) on the
curve that satisfy the condition that both x and y are members
of the prime field, you have implicitly created a group from
the set of integer points on the curve; it is a subset of all the
points in the p by p matrix created when you drew the graph
— specifically the ones the curve passes directly through.
Note that unlike the groups used in Diffie Hellman, the
elements of the set aren't integers, but points. But the system
that will result is still going to be, in most senses, the same,
familiar arithmetic system as those discussed above. It
contains a set of elements (points, in this case), and when you
add one point to another, or subtract one from another, there
are rules that say what point in the set you wind up at when
you do so — just as for the integers in the groups used in
Diffie Hellman.
4.5 POINT ADDITION
 Point addition is the addition of two points P and Q
on an elliptic curve to obtain another point L on the same
elliptic curve.

4.6 GEOMETRICAL EXPLANATION

AAddddiinngg PPooiinnttss PP aanndd QQ
Point addition(when Q ≠ -P) Point
addition(when Q ≠ -P)
 Consider two points P and Q on an elliptic curve
as shown in figure11 (a). If Q ≠ -P then a line drawn through
the points P and Q will intersect the elliptic curve at exactly
one more point –R. The reflection of the point –R with
respect to x-axis gives the point R, which is the result of
addition of points P and Q.
Thus on an elliptic curve R = P + Q.
If Q = -P the line through this point intersect at a point at
infinity O. Hence P + (-P) = O.
This is shown in figure 11(b). O is the additive identity of the
elliptic curve group. A negative of a point is the reflection of
that point with respect to x-axis.

5.1 ANALYTICAL EXPLANATION
 Consider two distinct points J and K such that J = (xJ,
yJ) and K = (xK, yK)
Let L = J + K where L = (xL, yL), then
xL = s2 - xJ – xK
yL = -yJ + s (xJ – xL)
s = (yJ – yK)/(xJ – xK), s is the slope of the line through J
and K.
If K = -J i.e. K = (xJ, -yJ) then J + K = O. where O is the
point at infinity.
If K = J then J + K = 2J then point doubling equations are
used.
Also J + K = K + J

 Figure 11(a) Figure 11(b)

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 604

 Figure 12(a)

 Figure 12(b)
5.1.1 Point doubling
 Point doubling is the addition of a point P on the elliptic
curve to itself to obtain another point R on the same elliptic
curve. To double a point P to get R, i.e. to find R = 2P,
consider a point P on an elliptic curve as shown in figure12
(a). If y coordinate of the point P is not zero then the tangent
line at P will intersect the elliptic curve at exactly one more
point –R. The reflection of the point –R with respect to x-axis
gives the point L, which is the result of doubling the point P.
Thus R = 2P.
If y coordinate of the point P is zero then the tangent at this
point intersects at a point at infinity O. Hence 2P = O when
yP = 0. This is shown in figure12 (b).
Point doubling (when Py  0)Point doubling (when Py =0)
5.1.2 ANALYTICAL EXPLANATION
Consider a point J such that J = (xJ, yJ), where yJ ≠ 0
Let L = 2J where L = (xL, yL), Then
xL = s2 – 2xJ
yL = -yJ + s(xJ - xL)
If yJ = 0 then 2J = O, where O is the point at infinity
5.1.3 POINT SUBTRACTION
Consider two distinct points J and K such that J = (xJ, yJ) and
K = (xK, yK)
Then J - K = J + (-K) where -K = (xk, -yk mod p)
Point subtraction is used in certain implementation of point
multiplication.

5.2 EC ON BINARY FIELD F2M
The equation of the elliptic curve on a binary field F2m is y2
+ xy = x3 + ax2 + b, where b ≠ 0. Here the elements of the
finite field are integers of length at most m bits. These
numbers can be considered as a binary polynomial of degree
m – 1. In binary polynomial the coefficients can only be 0 or
1. All the operation such as addition, substation, division,
multiplication involves polynomials of degree m – 1 or

lesser.. The m is chosen such that there is finitely large
number of points on the elliptic curve to make the
cryptosystem secure. SEC specifies curves with m ranging
between 113-571 bits . The graph for this equation is not a
smooth curve. Hence the geometrical explanation of point
addition and doubling as in real numbers will not work here.
However, the algebraic rules for point addition and point
doubling can be adapted for elliptic curves over F2m.
5.2.1 Point Addition
Consider two distinct points J and K such that J = (xJ, yJ) and
K = (xK, yK)
Let L = J + K where L = (xL, yL), then
xL = s2 + s + xJ + xK + a
yL = s (xJ + xL) + xL + yJ
s = (yJ + yK)/(xJ + xK), s is the slope of the line through J
and K.
If K = -J i.e. K = (xJ, xJ + yJ) then J + K = O. where O is the
point at infinity.
If K = J then J + K = 2J then point doubling equations are
used.
Also J + K = K + J
5.2.2 Point Subtraction
Consider two distinct points J and K such that J = (xJ, yJ) and
K = (xK, yK)
Then J - K = J + (-K) where -K = (xk, xk + yk)
Point subtraction is used in certain implementation of point
multiplication.
5.2.3 Point Doubling
Consider a point J such that J = (xJ, yJ), where xJ ≠ 0
Let L = 2J where L = (xL, yL), Then
xL = s2 + s + a
yL = xJ2 + (s + 1)*xL
s = xJ + yJ/ xJ, s is the tangent at point J and a is one of the
parameters chosen with the elliptic curve If xJ = 0 then 2J =
O, where O is the point at infinity.

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 605

 5.2.4 Point Multiplication
The dominant operation in ECC cryptographic schemes is
point multiplication. This is the operation which is the key to
the use of elliptic curves for asymmetric cryptography — the
critical operation which is itself fairly simple, but whose
inverse (the elliptic curve discrete logarithm problem —
defined below) is very difficult. ECC arranges itself so that
when you wish to perform an operation the cryptosystem
should make easy — encrypting a message with the public
key, decrypting it with the private key — the operation you
are performing is point multiplication.
Point multiplication is simply calculating kP, where k is an
integer and P is a point on the elliptic curve defined in the
prime field. In terms of the addition operation we defined
above, and the corresponding diagram, you can see how the
following would look: take a point, add it to itself
(doubling). Then take the result, and the original point, and
add them together again, using the chord and tangent rule.
Then take that result, and the original point again, and use the
chord and tangent rule yet again. And so on — doing one
doubling, and k-2 chord and tangent additions, until you've
added P to itself k-1 times, giving kP.
Now if the only way of doing this were in fact to repeat those
precise operations — finding the points P, 2P, 3P, and so on
up to kP — elliptic curves would be useless for cryptography,
since the operation which searches for k given only P and kP
(see the elliptic curve discrete logarithm problem, below)
would be no harder than doing this. You could thus search for
k from kP as quickly as you could calculate kP directly given
p and k.
However, there are shortcuts for point multiplication. Given
the known shape of the curve, there are in fact several
algorithms available which run in considerably less time than
would such a stepwise operation. Which of them you choose
to use depends on a number of factors - including which
calculations you might be able to do ahead of time (which is
practical for some cryptographic protocol purposes, in which
P is known ahead of time), how much RAM you can set aside
for lookup tables, and that sort of thing.
None of the operations is exactly what you'd call trivial. But
all of them are vastly easier than doing it by stepwise addition
— easier by many orders of magnitude. And they also run in
near constant time for a given field size, regardless of what k
and P you feed them as input. Some of the fastest working are
in the NIST P192 curve, defined using the prime 2192-264+1.
Here, you are able to get kP in the equivalent of 38 addition
and 192 doubling operations, when counting only those
which are usable even when P isn't known ahead of time.
You can do better still, in fact, in hardware implementations,
in fields of order 2m. In these fields-the fields called binary
fields, or characteristic two finite fields hardware
implementations that take advantages of opportunities for
parallel processing, multiplication has been accelerated. Now
these still aren't trivial operations. But the important thing is
this: compared to what the attacker has to do to get k back
from kP, it's nothing. Which brings us to the inverse
operation.

5.3 ELLIPTIC CURVE CRYPTOGRAPHY
(DISCRETE LOGARITHM PROBLEM)
 The security of ECC depends on the difficulty of
Elliptic Curve Discrete Logarithm Problem. Let P and Q be
two points on an elliptic curve such that kP = Q, where k is a
scalar. Given P and Q, it is computationally infeasible to
obtain k, if k is sufficiently large. k is the discrete logarithm
of Q to the base P. Hence the main operation involved in
ECC is point multiplication. i.e. multiplication of a scalar k
with any point P on the curve to obtain another point Q on the
curve.
The inverse operation to point multiplication — finding a log
in a group defined on an elliptic curve over a prime field — is
defined as follows: given points Q and P, find the integer k
such that Q=kP.
This is the elliptic curve discrete logarithm problem — and
this is the inverse operation in the cryptosystem — the one
you effectively have to perform to get the plaintext back from
the cipher text, given only the public key.
Now naively the obvious, certain way of finding k would be
to perform repeated addition — operations — stepping
through P, 2P, 3P, and so on, until you find kP. You'd start by
doubling P, then adding P to 2P finding 3P, then 3P to P
finding 4P and so on. This is the brute force method. The
trouble with this is if you use a large enough prime field, the
number of possible values for k becomes inconveniently
large. So inconveniently large that it's quite practical to create
a sufficiently large prime field that searching through the
possible values of k would take all the processor time
currently available on the planet thousands of years. Though
there is a bit more to the story we have to get to now, to
distinguish between how difficult it is to break ECC versus
how difficult it is to break Diffie Hellman and RSA.
Example of Point multiplication:-
In point multiplication a point P on the elliptic curve is
multiplied with a scalar k using elliptic curve equation to
obtain another point Q on the same elliptic curve. i.e. kP=Q
Point multiplication is achieved by two basic elliptic curve
operations
 Point addition, adding two points J and K to obtain
another point L i.e., L = J + K.
 Point doubling, adding a point J to itself to obtain
another point L i.e. L = 2J.
Here is a simple example of point multiplication.
Let P be a point on an elliptic curve. Let k be a scalar that is
multiplied with the point P to obtain another point Q on the
curve. i.e. to find Q = kP.
If k = 23 then kP = 23.P = 2(2(2(2P) + P) + P) + P.
Thus point multiplication uses point addition and point
doubling repeatedly to find the result. The above method is
called ‘double and add’ method for point multiplication.
There are other efficient methods for point multiplication
such as NAF (Non – Adjacent Form) and wNAF (windowed
NAF) method for point multiplication.
5.3.1 Elliptic Curve Domain parameters
 Apart from the curve parameters a and b, there are
other parameters that must be agreed by both parties involved

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 606

in secured and trusted communication using ECC. These are
domain parameters. The domain parameters for prime fields
and binary fields are described below. The generation of
domain parameters is out of scope of this paper. Generally
the protocols implementing the ECC specify the domain
parameters to be used.
5.3.2 Domain parameters for EC over field Fp
 The domain parameters for Elliptic curve over Fp
are p, a, b, G, n and h. p is the prime number defined for
finite field Fp . a and b are the parameters defining the curve
y2 mod p= x3 + ax + b mod p. G is the generator point (xG,
yG), a point on the elliptic curve chosen for cryptographic
operations and n is the order of the elliptic curve. The scalar
for point multiplication is chosen as a number between 0 and
n – 1. h is the cofactor where h = #E(Fp)/n. #E(Fp) is the
number of points on an elliptic curve.
5.3.3 Domain parameters for EC over field F2m
 The domain parameters for elliptic curve over F2m
are m, f(x), a, b, G, n and h.m is an integer defined for finite
field F2m. The elements of the finite field F2m are integers of
length at most m bits. f(x) is the irreducible polynomial of
degree m used for elliptic curve operations. a and b are the
parameters defining the curve y2 + xy = x3 + ax2 + b. G is the
generator point (xG, yG), a point on the elliptic curve chosen
for cryptographic operations. n is the order of the elliptic
curve. The scalar for point multiplication is chosen as a
number between 0 and n – 1. h is the cofactor
where h = #E(F2m)/n. #E(F2m) is the number of points on an
elliptic curve.
Example:-(Elliptic curve over F23) Let p=23 and consider an
elliptic curve E=>
Y2 = x3 + x + 4 defined over F23.

6. IMPLEMENTATION ISSUES
Generation of Elliptic Curve on a finite set of Integers

Consider an elliptic curve:- y2 = x3 + ax + b (mod p) such
that 4a3 + 27b2  0
Let domain parameters are a = 2, b = 3, & p = 5 then the
curve is-

y2 = x3 + 2x + 3 (mod 5)
Now to find no of points on elliptic curve is:-

 x = 0 => y2 = 3 => no solution (mod 5)

 x = 1 => y2 = 6 = 1 => y = 1,4 (mod 5)

 x = 2 => y2 = 15 = 0 => y = 0 (mod 5)

 x = 3 => y2 = 36 = 1 => y = 1,4 (mod 5)

 x = 4 => y2 = 75 = 0 => y = 0 (mod 5)
Then points on the elliptic curve are:-

(1,1) (1,4) (2,0) (3,1) (3,4) (4,0) and the point at infinity.
 Point Counting
The order of E (Fp) is denoted as # E(Fp).
Determining #E (Fp) is an important problem, called point
counting.
 Hesse’e Theorem
P + 1 - 2 p  #E(Fp)  p + 1 + 2 p

6.1 Elliptic Curve & Finite Field
 Elliptic curve calculations are usually defined
over finite field The finite field is prime field GF(P) The
elements are {0,1,2,…,p-1} all operations are modulo p
 The finite field is a binary polynomial field GF(2m)
 The elements are binary polynomials all operations
are modulo 2
x = am-1Xm-1 + am-2Xm-2 + … + a1X + a0 ; ai = {0,1}
Defining the curve over Binary Field will speed up the
calculations
6.2 Elliptic Curve Scalar Multiplication
 Scalar multiplication is the dominant computation part of

ECC
 It computes k×P for a given point P and integer k.
 Q = k×P = (P + P + … + P) ((k-1) addition)
 There are different methods for speeding up this process,

The most common
 one is the Binary Method (also called Double and Add

Method)
6.3 ECDSA (Signature Generation &
Verification)
The EC algorithms are specified above. An overview of EC
cryptographic algorithms for key agreement and digital
signature are explained below.
6.4 ECDSA - Elliptic Curve Digital Signature
Algorithm
Signature algorithm is used for authenticating a device or a
message sent by the device. For example consider two
devices A and B. To authenticate a message sent by A, the
device A signs the message using its private key. The device
A sends the message and the signature to the device B. This
signature can be verified only by using the public key of
device A. Since
the device B knows A’s public key, it can verify whether the
message is indeed send by A or not. ECDSA is a variant of
the Digital Signature Algorithm (DSA) that operates on
elliptic curve groups. For sending a signed message from A
to B, both have to agree up on Elliptic Curve domain
parameters. The domain parameters are defined in section 9.
Sender ‘A’ have a key pair consisting of a private key dA (a
randomly selected integer less than n, where n is the order of
the curve, an elliptic curve domain parameter) and a public
key QA = dA * G (G is the generator point, an elliptic curve
domain parameter). An overview of ECDSA process is
defined below.
6.4.1 Signature Generation
For signing a message m by sender A, using A’s private key
dA
1. Calculate e = HASH (m), where HASH is a cryptographic
hash function, such as
 SHA-1
 2. Select a random integer k from [1,n − 1]
 3. Calculate r = x1 (mod n), where (x1, y1) = k * G.
If r = 0, go to step 2
 4. Calculate s = k -1(e + dAr)(mod n). If s = 0, go to
step 2
 5. The signature is the pair (r, s)

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 607

6.4.2 Signature Verification
For B to authenticate A's signature, B must have A’s public
key QA
1. Verify that r and s are integers in [1,n − 1]. If not,
the signature is invalid
2. Calculate e = HASH (m), where HASH is the same
function used in the signature generation.
3. Calculate w = s −1 (mod n)
4. Calculate u1 = ew (mod n) and u2 = rw (mod n)
5. Calculate (x1, y1) = u1G + u2QA
6. The signature is valid if x1 = r(mod n), invalid
otherwise
Size The size of an ECC public key, ECDSA signature and
an ECIES encryption will be compared with those produced
by an RSA system.
 Public Key Size
An RSA public key consists of an ordered pair (n,e) where n
is a composite number, called the modulus, and e is the
public exponent. In a 1024-bit RSA system, n will have 1024
bits. A common value for the public exponent is e=216+1.
This is the value that Entrust uses. Thus, an Entrust RSA
public key would require 128 bytes for the modulus and 3
bytes for the public exponent. The total size is then 131 bytes.
An ECC public key consists of a point on the elliptic curve.
Each point is represented by an ordered pair of elements (x,y)
each with 192 bits. For a 192-bit elliptic curve, the public key
would then be represented by two 24-byte values, giving a
total key size of 48 bytes.1As can be seen from the numbers
above, ECC does provide a significant reduction in public
key size. This reduction can be crucial in many severely
constrained environments where large public keys are not
possible. However, in a PKI using X.509 certificates, the
effect of using the smaller public keys is minimal. A typical
size for an X.509 certificate would be about 1K (~1000
bytes). Thus, changing a user’s public key from RSA or DSA
to ECC would reduce his/her certificate size by less than
10%.Another important point to keep in mind is that each
ECC public key is only valid in the context of certain
parameters. These parameters must also be specified and
transferred with integrity to the public key recipient (e.g.
within an X.509 certificate). While there do exist certain
curves which can be represented using short identifiers, in the
general case, it will require an additional five 192-bit (24-
byte) quantities to specify these parameters. Thus, it could
take up to 110 additional bytes. RSA does not require any
parameters be transferred with the public key.
 Signature Size
An RSA signature consists of a single 1024 bit value. Thus, it
can be represented in 128 bytes. An ECDSA signature
consists of two 192-bit values. Thus, it can be represented
using two 24-byte values, for a total signature size of 48
bytes.2 1 A method does exist to reduce the size of ECC
public keys by almost a factor of 2. This method, called point
compression, is a proprietary technique that is not available
to all implementers of ECC, thus to ensure interoperability it
is not recommended. For this reason, the size estimates given
assume no point compression has been performed. If point

compression was used, a public key could be represented
using one 192-bit value and one additional bit. This would
then require (24+1=) 25 bytes. Again, the reduction in
signature size is substantial and may be important for many
constrained environments. However, as with public key size,
the difference represents less than 10% of the size of a public
key certificate. For larger signed messages, the difference
would represent an even smaller percentage of the overall
message.
 Encryption Size
This section will compare the difference in size in
transporting a 128 bit symmetric key using RSA and ECIES.
This is the typical scenario when files are encrypted, for
example. The encryption algorithm ECIES is specified in the
ANSI X9.63 draft . A 128 bit symmetric key encrypted using
RSA will consist of one 1024 bit value. Thus, it can be
represented using 128 bytes. A 128 bit symmetric key
encrypted using ECIES will consist of an elliptic curve point,
a 128-bit value and a 160-bit value. The elliptic curve point
consists of two 192-bit values, so it can be represented using
two 24-byte values, or 48 bytes.3 The 128-bit value can be
represented using 16 bytes and the 160-bit value can be
represented using 20 bytes. Thus the encrypted symmetric
key requires 84 bytes. While ECIES does indeed produce
smaller encrypted values than RSA, the difference is not as
dramatic as for public keys and signature values. When
considering that the symmetric key will then usually be used
to encrypt much larger files, the advantage may become
inconsequential.
6.4 Comparison with RSA
 This section compares ECC public key sizes, signature
and encryption lengths, and speed with those of RSA. Typical
usage scenarios will be used to describe the effect these have
on various implementations. The ECC system under
consideration will use an odd characteristic 192-bit elliptic
curve, which is the default used by the Entrust product line.
The RSA system will use 1024-bit keys, which is also the
default in the Entrust product line.
6.5.1 Run-time Comparisons
 To test and compare the performance characteristics of
the RSA and ECDSA signature algorithms, we independently
tested each of the three main components: key generation,
signature generation and signature verification. Since ECC
offers security equivalent to RSA using much smaller key
sizes, the performances were tested according to the
following table, suggested from .

Symmetric ECC RSA
80 163 1024
112 233 2240
128 283 3072
192 409 7680
256 571 15360

Table 2 -Comparable key sizes (in bits)
6.5.2 Tests were performed on an Intel P4 2.0 GHz
machine with 512MB of RAM.
The message used for signing is a 100 KB text file

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 608

Figure 13 - Comparison b/w ECC & RSA

6.6 Security of ECC
One of the advantages of using elliptic curve based
cryptographic systems instead of integer factorization or
discrete logarithm based methods is that they provide similar
security levels using smaller key lengths. Why is this? As
mentioned in the previous section, the security of any public-
key based cryptography is based upon the difficulty of
solving certain mathematical problems. Thus, we can
determine the amount of effort that would be required to
break one of these public-key systems by looking at the effort
required to solve these hard problems, using the best
algorithms, software and hardware which are known. It
should be noted that in the future new solutions to any of
these problems might be discovered that drastically change
the amount of effort required to solve them. The analysis
below is based on the best methods known today.
Most people consider the integer factorization and discrete
logarithm problems to have approximately equivalent

security. Both of these problems have undergone intensive
review and study by many of the world’s top mathematicians
and cryptographers. This can give us a sense of comfort that
these problems are, in fact, difficult to solve. Actually, the
best method known to solve each of these problems is the
Number Field Sieve (NFS). The NFS is what is known as a
sub-exponential time method. This means that the problem
can be considered hard to solve, but not as hard as problems
that only allow fully exponential solutions. It is generally
accepted that, based on the difficulty of solving the integer
factorization problem and discrete logarithm problem, RSA,
DSA and Diffie-Hellman keys should be at least 1024 bits
long and that for very long-term security (20 years or more)
2048 bit keys should be used. Recently a large-scale effort
was able to factor a 512-bit integer, thus showing that keys of
this size are vulnerable to attack by large, sophisticated
adversaries.

2000 2010 2020 2030 2040
 Year

3500

3000

2500

2000

1500

1000

500

Key length

(Bits)

RSA

ECC

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 609

On the other hand, solving the ECDLP is generally
considered to be a much more difficult problem than
factoring integers or solving the discrete logarithm problem.
Because of the structure that is inherent within an elliptic
curve, the types of solutions to these problems do not seem to
apply to the ECDLP. The best method known to solve the
ECDLP is an elliptic curve version of an attack developed by
Entrust researchers for the discrete logarithm problem, known
as the parallel collision search method. This method is fully
exponential, which means that that the ECDLP can be
considered among the hardest types of problems to solve,
using the best methods known today. One of the
consequences of the ECDLP only having a fully exponential
solution is that for every two additional bits of key used,
attacking that key requires twice as much effort. Thus,
attacking a 193-bit elliptic curve public key requires twice as
much effort as attacking a 191-bit key. Because it is relatively
new, the ECDLP has not received as much attention from
mathematicians and cryptographers as the integer
factorization and discrete logarithm problem. Although,
within the past few years, that has begun to change and a
great deal of effort has been made at attempting to solve this
problem. Since a great deal of research is still ongoing, it is
difficult to directly compare the security levels provided by
ECC with those provided by RSA, DSA and Diffie-Hellman,
for example. However, it seems reasonable that for security
equivalent to an RSA key with 1024 bits, one should use an
elliptic curve with about 170 bits and that for security
equivalent to an RSA key with 2048 bits, one should use an
elliptic curve with about 230 bits. The above discussion on
the difficulty of attacking an ECC public key assumes that
certain weak cases have been avoided when constructing the
elliptic curve parameters. There are certain elliptic curves that
are known to produce cryptographic systems with a
substantially lower security level than the general case
described above.

7.CONCLUSION
And this, in the end, is the reason ECC is a stronger option
than the RSA and discrete logarithm systems for the future.
And this, in the end, is why ECC is such an excellent choice
for doing asymmetric cryptography in portable, necessarily
constrained devices right now.
As an example: as of this writing, a popular, recommended
RSA key size for most applications is 2,048 bits. For
equivalent security using ECC, you need a key of only 224
bits. The difference becomes more and more pronounced as
security levels increase (and, as a corollary, as hardware gets
faster, and the recommended key sizes must be increased). A
384 -bit ECC key matches a 7680-bit RSA key for security.
The smaller ECC keys mean the cryptographic operations
that must be performed by the communicating devices can be
squeezed into considerably smaller hardware, that software
applications may complete cryptographic operations with
fewer processor cycles, and operations can be performed that
much faster, while still guaranteeing equivalent security.

This means, in turn, less heat, less power consumption, less
real estate consumed on the printed circuit board, and
software applications that run more rapidly and make lower
memory demands. Leading in turn to more portable devices
which run longer, and produce less heat.
In short, if you're trying to make your devices smaller—and if
you need to do asymmetric cryptography, you need ECC. If
you're trying to make them run longer on the same battery,
and produce less heat, and you need asymmetric
cryptography, you need ECC. And if you want an asymmetric
cryptosystem that scales for the future, you want ECC. And if
you just want the most elegant, most efficient asymmetric
cryptosystem going, you want ECC. If you just want the most
elegant, most efficient asymmetric cryptosystem going, you
want ECC.
For efficient implementation of ECC, it is important for the
point multiplication algorithm and the underlying field
arithmetic to be efficient. There are different methods for
efficient implementation point multiplication and field
arithmetic suited for different hardware configurations.
Implementation of ECC using projective coordinates has
shown considerable improvement in efficiency compared to
the affine coordinate implementation. This improvement in
efficiency is due to the elimination of multiplicative inverse
operation in point addition and doubling that would otherwise
cost considerable processor cycles.
If the irreducible polynomial in binary field implementation
is chosen to be trinomial or pentanomial the implementation
of ECC on binary field can be made efficient than the prime
field implementation. In SEC specified domain parameters,
the irreducible polynomials are either trinomial or
pentanomial. These chosen polynomials cause the polynomial
reduction in binary field to run much faster than the modular
reduction in prime field.
How ECC is the next generation of public key
cryptography
Asymmetric cryptography is a marvelous technology. Its uses
are many and varied. And when you need it, you need it. For
many situations in distributed network environments,
asymmetric cryptography is a must during communications.
If you're taming key distribution issues with a public key
infrastructure (PKI), you're using asymmetric cryptography.
If you're designing or employing any kind of network
protocol or application requiring secure communications, to
come up with a practical solution, you're going to have to use
asymmetric cryptography.
Asymmetric cryptography has, in fact, proved so useful for
securing communications that it has become pervasive in
modern life. Every time you buy something on the Internet, if
the vendor is using a secure server, you're using asymmetric
cryptography to secure the transaction.
But Asymmetric cryptography is demanding and complex, by
its very nature. The hard problems in number theory — the
key to the algorithms' functionality — are all intrinsically
difficult enough that the processor cycles you must throw at
doing it, and/or the chip space you must dedicate to the

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 610

implementation, inevitably far outstrip the resources you
must dedicate for doing symmetric cryptography.
That's why if you need asymmetric cryptography, you should
be considering elliptic curve cryptography (ECC).
 ECC offers considerably greater security for a given key

size — something we'll explain at greater length later in
this paper.

 The smaller key size also makes possible much more
compact implementations for a given level of security,
which means faster cryptographic operations, running on
smaller chips or more compact software. This means less
heat production and less power consumption — all of
which is of particular advantage in constrained devices,
but of some advantage anywhere.

 There are extremely efficient, compact hardware
implementations available for ECC exponentiation
operations, offering potential reductions in
implementation footprint even beyond those due to the
smaller key length alone.

In short: asymmetric cryptography is demanding. But if
you're looking for the cryptosystem that will give you the
most security per bit, you want ECC.
This thesis describes elliptic curve cryptography in greater
depth — how it works, and why it offers these advantages. It
will begin by discussing the larger subject of asymmetric
cryptography in general.

REFERENCES
 [1] Prof.Vivek Katiyar,A Survey on Elliptic Curve Cryptography for

Pervasive
 Computing Environment, International Journal of Computer Applications

(0975 – 8887) Volume 11– No.10, December 2010
[2] Prof.Tarun Narayan Shankar, CRYPTOGRAPHY WITH ELLIPTIC

CURVES, International Journal Of Computer
Science And Applications Vol. 2, No. 1, April / May 2009

[3] Prof. Dr. Ersan AKYILDIZ “SCALAR MULTIPLICATION ON
ELLIPTIC CURVES” M.Sc., Department of Cryptography YAYLA
Supervisor: August 2006.

[4] Don Johnson et al Alfred Menezes and Scott Vanstone “ECC, Future
Resiliency and High Security Systems” March 30, 1999 ,Dept. of
Combinatorics & Optimization, University of Waterloo,Canada ,mail
to:- djohnson@certicom.com

[5] Frankfurt “CrypTool Script Mathematics and Cryptography” The
author, 1998-2003 July 17, 2003

[6] Robert Zuccherato “ Elliptic Curve Cryptography Support in Entrust
“Author: Date: May 9, 2000

[7] Joe Hurd “Elliptic Curve Cryptography A case study in formalization
using a higher order logic theorem prover” Course Notes, Oxford
University joe.hurd@comlab.ox.ac.uk, 4–5 August 2005

[8] CZESŁAW KO´S CIELNY “A NEW APPROACH TO THE
ELGAMAL ENCRYPTION SCHEME” Academy of Management of
Legnica, Faculty of Computer Science , Reymonta 21, 59–220 Legnica,
Poland e-mail: C.Koscielny@wsm.edu.pl

[9] Don B. Johnson, Certicom “ECC A Future High Security Systems”
Revised July 6 , 1999 to correct typo in RSA key generation
description and clarify low exponent RSA discussion , e-mail :-
djohnson@certicom.com

[10] Nicholas Jansma and Brandon Arrendondo “Performance Comparison
of Elliptic Curve and RSA for Digital Signatures” April 28 2004,
njansma@engin.umich.edu, barrendo@engin.umich.edu

[11] Christian P¨uhringer cip “High Speed Elliptic Curve Cryptography
Processor for GF(p)” 8.7.2005, e-mail: cip@gmx.at

[12] Sharat Narayan “New Generation Cryptosystems using Elliptic Curve
Cryptography”

[13] Aleksandar Juri & Alfred J. Menezesy “Elliptic Curves and
Cryptography”March 23, 2005, Journal of Cryptology, 3 (1991), 63-79.

[14] Victor Miller [l2] and Neal Koblitz “ Elliptic curve cryptography”
Hewlett-Packard Laboratories, Palo Alto, CA 94304, U.S.A., 1999,
Metsovo, Greece, June 27 - July 1

[15] Schinianakis et al D.M. Kakarountas and A.P.; Stouraitis “A new
approach to elliptic curve cryptography” Electrotechnical Conference,
2006. MELECON 2006. IEEE Mediterranean Volume , Issue , 16-19
May 2006.

[16] V. S. Dimitrov et al L. Imbert and P. K. Mishra “Fast Elliptic Curve
Point Multiplication using Double-Base Chains” University of Calgary,
University drive NW Calgary, AB, T2N 1N4, Canada 2 CNRS,
LIRMM, UMR 5506 ,161 rue Ada, 34392 Montpellier cedex 5, France.

[17] M. Abdalla, M. Bellare, and P. Rogaway. DHAES: “Elliptic Curve
Cryptography” Certicom Research. 1998. secg-
talk@lists.certicom.com,http://www-cse.ucsd.edu/users/mihir/

[18] IEEE P1363. Standard Specifications for Public-Key Cryptography.
Institute of Electrical and Electronics Engineers, 2000.

[19] Dr. Andreas Steffen “The Elliptic Curve Cryptosystem” in the year of
2002, Zürcher Hochschule Winterthur

[20] IEEE P1363A. Standard Specifications for Public-Key Cryptography:
Additional Techniques. May,2000. Working Draft.

[21] ISO/IEC 14888-3. Information technology - Security techniques -
Digital signatures with appendix- Part 3: Certificate-based
mechanisms.

[22] ISO/IEC 15946-1. Information technology - Security techniques -
Cryptographic techniques based on elliptic curves - Part 1: General.
1998. Working draft.

[23] ANSI X9.63-199x: Public Key Cryptography for the Financial
Services Industry: Key Agreement and Key Transport Using Elliptic
Curve Cryptography. October, 1999. Working Draft.

[24] ISO/IEC 15946-2. Information technology - Security techniques -
Cryptographic techniques based on elliptic curves - Part 2: Digital
signatures. 1998. Working draft.

[25] M. Abdalla, M. Bellare, and P. Rogaway. DHAES: An encryption
scheme based on the Diffie- Hellman problem. 1998. Full version of
[11]. Available from: http://www-cse.ucsd.edu/users/mihir/

[26] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31: pages 469–472, 1985.

27] Stallings, W. Cryptography and Network Security. Prentice Hall, 2003.
[28] ANSI X9.62-1998: Public Key Cryptography for the Financial

Services Industry: the Elliptic Curve Digital Signature Algorithm
(ECDSA). American Bankers association, 1999.

[29] G. Lay and H. Zimmer. Constructing elliptic curves with given group
order over large finite fields. Algorithmic Number Theory, pages 250–
263, 1994.

[30] Schneier, B. “Elliptic Curve Public Key Cryptography”. Cryptogram
ENewsletter. November 15, 1999 <http://www.counterpane.com/

Mahendra Singh Yadav et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 600 - 611

www.ijcsit.com 611

